A Numerical Study About the Effects of Design and Test Parameters on the Crushing Behavior of a Truncated Cone
Loading...
Date
2021-04-30
Authors
Journal Title
Journal ISSN
Volume Title
Publisher
TUBITAK ULAKBIM
Abstract
A numerical study was performed on the crushing behavior of an aluminum truncated cone structure for different design parameters and test speeds. Numerical models were prepared in the Ls-Prepost v4.7.1 software, and simulations were run in the Ls-Dyna solver. The Mat_18 power law plasticity and Mat_20 rigid material models were used for mimicking the behaviors of the aluminum tube and rigid plate, respectively. The effects of three different parameters as the ratio of the bottom and top diameters, contact angle of the rigid plate and test speed were investigated. Force-displacement curves for each case were obtained and evaluated to understand the crushing behaviors of the geometries with the aforementioned parameters. The geometry which had the 2.5 bottom/top diameter ratio performed the highest energy absorption among all geometries.