Fakülteler
Permanent URI for this community
Browse
Browsing Fakülteler by Subject ": Boya Duyarlı Güneş Hücreleri (DSSC), Nano-yarıiletkenler, CuO/TiO2 foto anot"
Now showing 1 - 1 of 1
Results Per Page
Sort Options
Item Investigation of Optoelectronic Properties by Synthesizing Hybrid Nano-semiconductors in New Generation Solar Cells(Düzce Üniversitesi Bilim ve Teknoloji Dergisi,, 2021-01-09) Kılıç; Kılıç, BayramThe energy requirements in our society are based on fossil fuels, but the fact that these fossil fuels are limited and the rapid increase in carbon dioxide concentration due to the burning of fossil fuels cause global warming and climate changes. Under these conditions, interest in photovoltaic (PV) solar cells as an alternative and clean energy source is increasing. The use of silicon solar cells and thin film-based solar cells has been actively studied in recent years. But these solar cells are still too expensive to compete with public electricity generation. One of the important ideas for reducing the cost of solar cells and increasing energy conversion efficiency is the production of nano-semiconductor based new generation dye sensitized solar cells (DSSC). In this study, hybrid materials were obtained via CuO which is grown on TiO2 semiconductor and used as photo anode in DSSC. TiO2 semiconductor was prepared by hydrothermal method. CuO was synthesized by hydrothermal method on the prepared TiO2 semiconductor. In DSSCs, N719 was used as the dye and platinum was used as the counter electrode. Structural and optical characterizations were carried out by using Scanning Electron Microscope (SEM), Energy Dispersive X-Ray spectroscopy (EDAX), X-Ray Diffraction (XRD) and solar efficiencies were calculated from Current density-voltage (J-V) measurement. From the SEM analysis, it was shown that the CuO /TiO2 nanosemiconductor was synthesized at a high surface volume ratio and had a crystal size of approximately 20-50 nm. Existence of CuO semiconductor synthesized on TiO2 has been clearly shown from EDAX measurements. High purity crystallizations and Cu/TiO2 nano-semiconductor were detected from XRD measurements. Produce of solar cell was carried out in two stages and firstly, the efficiency of the solar cells produced with pure TiO2 was obtained as η = 5.05%, while the solar efficiency of the Cu /TiO2 cell was obtained as 6.18%. It has been observed that the efficiency of DSSCs increased by 20% by doping of CuO onto the TiO2 semiconductor.